CHP Analysi

«Plantrinal ånalvei

Annestinal Analysi

r I haistidi suuraga Arialysis

-oyalelli W

8-1-----

TAURIUN

DMA Building

Fort George G. Meade, MD

Pavel Likhonin

Mechanical Option

Thesis Final Presentation

- Mechanical Information
- •Goals •CHP Analysis
- Electrical Analysis
- Acoustical Analysis
- Thermal Storage Analysis
- System Optimization Analysis
- Conclusion
- Acknowledgements
- Questions

DMA Building Fort George G. Meade, MD

Pavel Likhonin Mechanical Option

Facility Information

Size: 186,000 SF Location: Fort George G. Meade, MD

Owner: Army Corps of Engineers

Architect: нок AECOM | HSMM Engineers:

24/7 Operation, Television Studios, Data Center Occupancy:

Completion Date: September 2011

Facility Information

•Goals

•CHP Analysis

Electrical Analysis

Acoustical Analysis

 Thermal Storage Analysis System Optimization Analysis

Conclusion

Acknowledgements

Questions

DMA Building

Fort George G. Meade, MD

Pavel Likhonin Mechanical Option

Mechanical Information

Air Delivery System:

Chilled Water System: Distribution System:

Hot Water System:

Control System:

Waterside Economizers:

Airside Economizers:

Variable Air Volume

Primary/Secondary Flow

(3) 3000 MBH Condensing Boilers Direct Digital Control using BACnet

Used for Data Center

Used in AHU's

Introduction

- Facility Information
- Mechanical Information
- •ivieciia
- •CHP Analysis
- •Electrical Analysis
- •Acoustical Analysis
- •Thermal Storage Analysis
- •System Optimization Analysis
- •Conclusion
- •Acknowledgements
- •Ouestions

DMA Building Fort George G. Meade, MD

Pavel Likhonin
Mechanical Option

Goal:

Minimize Costs Spent on Energy Consumption, Making the Building Less Expensive and More Efficient to Operate

Introduction

CHP Analysis

«Concon

- •Energy Cost Savings
- •Payback Period
- Sensitivity Analysis
- •Electrical Analysis
- •Acoustical Analysis
- •Thermal Storage Analysis
- •System Optimization Analysis
- •Conclusion
- •Acknowledgements
- •Questions

DMA Building

Fort George G. Meade, MD

Pavel Likhonin

Mechanical Option

Combined Heat & Power

Electric

- •1.8 MW Base Load
- 2.2 MW Peak Load

Thermal (Heating & Cooling)

• 4,900 MBH Base Load • 9,200 MBH Peak Load

Introduction

CHP Analysi

- *Concept
- •Energy Cost Savings
- Payback PeriodSensitivity Analysis
- Schallvity Ai
- Electrical Analysis
- •Acoustical Analysis
- Thermal Storage AnalysisSystem Optimization Analysis
- System OptinConclusion
- •Acknowledgements
- •Questions

DMA Building Fort George G. Meade, MD

Pavel Likhonin
Mechanical Option

& Generator

Introduction

CHP Analysis

*Concen

•Energy Cost Savings

•Payback Period

•Sensitivity Analysis

•Electrical Analysis

•Acoustical Analysis

Thermal Storage Analysis

System Optimization Analysis

Conclusion

Acknowledgements

•Questions

DMA Building

Fort George G. Meade, MD

Pavel Likhonin

Mechanical Option

CHP Options

System	Engine Type	Options	Electric Production	Load	Cooling	Heat Source	
Α		-	2390 kW	100%	800 Ton Absorption Chiller	Waste Heat + Boiler	
В	tion	-	2390 kW	100%	(2) 500 Ton Electric Chillers	Waste Heat Only	
С	Combustion	-	2390 kW	100%	700 Ton Absorption Chiller and a 300 ton Electric Chiller	Waste Heat Only	
D		-	2390 kW	Load- Following	800 Ton Absorption Chiller	Waste Heat + Boiler	
E	Internal	-	2390 kW	Load- Following	700 Ton Absorption Chiller and a 300 ton Electric Chiller	Waste Heat Only	
F		-	1801 kW	100%	800 Ton Absorption Chiller	Waste Heat +Boiler	
G		-	1200 kW	100%	800 Ton Absorption Chiller	Waste Heat Only	
н	Turbine	Back-Pressure Steam Turbine	1904 kW	100%	800 Ton Absorption Chiller	Waste Heat +Boiler	
1 2		Back-Pressure Steam Turbine	1904kW	100%	400 Ton Absorption Chiller and a 500 ton Electric Chiller	Waste Heat +Boiler	

Introduction

. •OHP Analysi

- •Energy Cost Savings
- Pavback Period
- Sensitivity Analysis
- •Electrical Analysis
- •Acoustical Analysis
- •Thermal Storage Analysis
- •System Optimization Ánalysis
- •Conclusion
- •Acknowledgements
- •Questions

DMA Building Fort George G. Meade, MD

Pavel Likhonin Mechanical Option

Engine & Generator At 100% Load

Introduction

CHP Analysis

- *Loncept
- •Energy Cost Savings
- Payback PeriodSensitivity Analysis
- •Electrical Analysis
- •Electrical Arialysis
- Acoustical AnalysisThermal Storage Analysis
- •System Optimization Analysis
- •Conclusion
- •Acknowledgements
- •Questions

DMA Building Fort George G. Meade, MD

Pavel Likhonin
Mechanical Option

Engine & Generator At 100% Load

Introduction

- Energy Cost Savings
- Pavback Period
- Sensitivity Analysis
- Electrical Analysis
- Acoustical Analysis Thermal Storage Analysis
- System Optimization Analysis
- Conclusion
- Acknowledgements
- Ouestions

DMA Building Fort George G. Meade, MD

Pavel Likhonin Mechanical Option

Jenbacher 2390 kW Natural Gas Engine & Generator Load Following

Introduction

*CHP Analysis

•Concept

«Energy Cost Saving

- *Payback Period
- Sensitivity Analysis
- Flastical Assiss
- Electrical Analysis
- Acoustical AnalysisThermal Storage Analysis
- •Svstem Optimization Analysis
- •Conclusion
- •Acknowledgements
- •Questions

DMA Building Fort George G. Meade, MD

MD

Pavel Likhonin

Mechanical Option

Yearly Energy Cost Savings by System

Introduction

·•OHP Analysi

- Concept
- •Energy Cost Savings
- •Pauhark Perir
- Sensitivity Analysis
- •Electrical Analysis
- •Acoustical Analysis
- •Thermal Storage Analysis
- System Optimization Analysis
- •Conclusion
- Acknowledgements
- •Questions

DMA Building Fort George G. Meade, MD

Pavel Likhonin
Mechanical Option

Payback Period

Introduction

- Concept
- Energy Cost Savings
- Pavback Period
- •Electrical Analysis
- Acoustical Analysis Thermal Storage Analysis
- System Optimization Analysis
- Conclusion
- Acknowledgements
- Questions

DMA Building

Fort George G. Meade, MD

Pavel Likhonin Mechanical Option

Sensitivity Analysis

- Introduction
- CHP Analysis

- Acoustical Analysis
- Thermal Storage Analysis
- System Optimization Analysis
- Conclusion
- Acknowledgements
- Questions

DMA Building

Fort George G. Meade, MD

Pavel Likhonin

Mechanical Option

Electrical Interface for CHP

- The generator switchboard and the breakers were sized based on current electrical design
- •Redundant Automatic Transfer Switches were added to critical equipment
 - Data Center
 - •Fire Pump

- Introduction
- •CHP Analysis
- •Electrical Analysis

- Thermal Storage Analysis
- System Optimization Analysis
- Conclusion
- Acknowledgements
- •Questions

DMA Building Fort George G. Meade, MD

Pavel Likhonin Mechanical Option

Acoustical Analysis

- Introduction
- CHP Analysis
- •Electrical Analysis

*Accustical Amalys:

- Thermal Storage Analysis
- •System Optimization Analysis
- •Conclusion
- Acknowledgements
- Ouestions

DMA Building

Fort George G. Meade, MD

Pavel Likhonin

Mechanical Option

Acoustical Analysis

- •Double 8" Concrete filled CMU wall
- •8" CMU wall, and 8" Concrete wall
- •8" CMU wall and a Metal Stud wall with insulation
- 8" CMU wall and a Metal Stud, with no insulation

- Introduction
- CHP Analysis
- Electrical Analysis
- •Acoustical Analysis

Thermal Storage Analysi

- •Energy Cost Savings
- •Payback Period
- Sensitivity Analysis
- System Optimization Analysis
- •Conclusion
- Acknowledgements
- •Questions

DMA Building

Fort George G. Meade, MD

Pavel Likhonin
Mechanical Option

Thermal Storage

Peak Shaving Strategy for:
 Ice Storage Chilled

Water Storage

Ice storage produced negative savings from this analysis due to inefficiency of making ice and low electric rates.

- Introduction
- CHP Analysis
- Electrical Analysis
- Acoustical Analysis

Thermal Storage Analys

- •Concept
- »Energy Chat Shaina
- •Payback Period
- Sensitivity Analysis
- System Optimization Analysis
- •Conclusion
- •Acknowledgements
- •Questions

DMA Building Fort George G. Meade, MD

D

Pavel Likhonin
Mechanical Option

Thermal Storage

- Peak demand was determined on a monthly basis.
- On-Peak to Off-Peak shift was determined on a daily basis.

Chilled Water Storage Savings

 Demand Savings:
 \$3,617.22

 On-Peak Savings:
 \$7,025.21

 Total Yearly Savings:
 \$10,643.43

- Introduction
- CHP Analysis
- Electrical Analysis
- •Acoustical Analysis

-Themali Sintane Analys

- •Concept
- •Energy Cost Savings
- Daybank Darind
- •Sensitivity Analysis
- System Optimization Analysis
- •Conclusion
- •Acknowledgements
- •Questions

DMA Building

Fort George G. Meade, MD

Pavel Likhonin Mechanical Option

Simple Payback Period

- Initial Investment was determined based on a 3,500 Ton-hr, 400,000 Gallon Tank and required accessories such as pumps, piping, etc.
- Due to N+1 Redundancy requirements, one chiller/cooling tower could be removed and the remaining chillers/cooling towers have to be upsized to 600 tons.
- Savings from one less chiller can be used to pay for the chilled water storage tank

Initial Investment: \$173,666 Simple Payback Period: \$16.32 Years

- Introduction
- •CHP Analysis
- Electrical Analysis
- •Acoustical Analysis

Thermal Storage Analysi

- •Concept
- •Energy Cost Savings
- •Payback Period

«Rancitivity Analysis

- •System Optimization Analysis
- •Conclusion
- •Acknowledgements
- •Questions

DMA Building

Fort George G. Meade, MD

Pavel Likhonin Mechanical Option

Thermal Storage

- Exponential Decline in the payback period
- As Electricity Rates increase, the payback period decreases
- 16.3 years to 12.4 years at a 10% increase

- Introduction
- •CHP Analysis
- Electrical Analysis
- Acoustical Analysis
- •Thermal Storage Analysis

-System Optimization Analysi

- Themel Stolege & CHP
 - Initial Investment/Payback Period
 - •miliai mvesimei
 - Data Center ChillerDOAS
- •Conclusion
- •Acknowledgements
- •Questions

DMA Building

Fort George G. Meade, MD

Pavel Likhonin
Mechanical Option

CHP Integrated with Thermal Storage

- CHP System A was used for this System Optimization Analysis
 - ☐ This system had the largest amount of wasted heat, which makes it a good candidate for integration with thermal storage.
- Integrating thermal storage into a CHP system produced slightly better results than thermal storage on its own.

Yearly Energy Cost Savings: \$11,644

- Introduction
- •CHP Analysis
- *Electrical Analysis
- Acoustical Analysis
- •Thermal Storage Analysis

System Optimization Analysi

- The second services of reces
 - Intro/Energy Cost Savings
 - similar investment/Pavback Period
- Data Center Chiller
- •DOAS
- Conclusion
- Acknowledgements
- Questions

DMA Building

Fort George G. Meade, MD

Pavel Likhonin

Mechanical Option

 Due to a smaller tank, and slightly larger yearly savings, the simple payback period for thermal storage was around

10.6 Years

Initial Investment for Thermal S	torage	with CHP	
350,000 Gallon Tank	\$	354,200.00	Ī
300 Feet of 5" Pipe	\$	10,500.00	
300 Feet of 2" Insulation for 5" Pipe	\$	5,874.00	
(2) 15 HP Pumps	\$	10,220.00	
One Less (500 Ton) Chiller	\$	(293,062.50)	
One Less (500 Ton) Cooling Tower	\$	(50,472.80)	
Increasing Size of Original Chiller (500 to 650 tons)	\$	71,200.00	
Increasing Size of Original Towers (500 to 650 tons)	\$	14,950.00	
Total	\$	123,408.70	

- Introduction
- •CHP Analysis
- Electrical Analysis
- Acoustical Analysis
- Thermal Storage Analysis

- Thermal Storage & CHP

 - Energy Cost Savings/Payback Period
- •DOAS
- Conclusion
- Acknowledgements
- Questions

DMA Building

Fort George G. Meade, MD

Pavel Likhonin Mechanical Option

Dedicating a Chiller to the Data Center

- Introduction
- •CHP Analysis
- Electrical Analysis
- Acoustical Analysis
- •Thermal Storage Analysis

System Optimization Analysi

- •Thermal Storage & CHP
 - ata Center Chille
 - Concept

*Energy Cost Savings/Payback Peri

- •DOAS
- •Conclusion
- Acknowledgements
- Questions

DMA Building

Fort George G. Meade, MD

Pavel Likhonin

Mechanical Option

Even with higher pumping costs, the total energy savings from running a chiller at higher temps was substantial

	Cooling Cost of the Data Center				
3 Г	Temperature	MMBTU/yea r	Savings \$/yr		
	44° F	15137.0	-		
	55° F	14065.4	\$28,155.00		
	60° F	13046.8	\$54.946.00		

- Initial Investment for dedicating a chiller only involved adding in a few valves, (2) pumps, and some piping.
- •The simple payback period calculated for running a chiller at 55° F was less than a year.

- Introduction
- •CHP Analysis
- •Electrical Analysis
- Acoustical AnalysisThermal Storage Analysis
- System Onlinization Analys
 - •Thermal Storage & CHP
 - •Data Center Chiller
 - -nnas
- Conclusion
- •Acknowledgements
- •Questions

DMA Building

Fort George G. Meade, MD

Pavel Likhonin
Mechanical Option

DOAS

- DOAS paralleled with Chilled Beams was modeled in TRACE 700 for annual energy and cost savings
- •Only lower energy density areas were modeled as DOAS with Chilled Beams
 - •Annual Energy Savings:
 - •Annual Cost Savings:

1,913 x 10⁶ [BTU/yr]

- Introduction
- CHP Analysis
- Electrical Analysis
- •Acoustical Analysis
- Thermal Storage AnalysisSystem Optimization Analysis

Conclusion

- •Acknowledgements
- •Questions

DMA Building Fort George G. Meade, MD

Pavel Likhonin
Mechanical Option

Conclusion

CHP System E Yearly Savings: \$578,552

Dedicated Chiller to Data Center @ 55° F: \$28,155

Chilled Water Storage W/CHP System A Savings: \$11,644

Chilled Water Storage Yearly Savings: \$10,643

DOAS (Office) Yearly Savings: \$46,949

- Introduction
- CHP Analysis
- Electrical Analysis
- Acoustical Analysis
- •Thermal Storage Analysis
- •System Optimization Analysis
- •Conclusion
- Acknowledgement
- •Questions

DMA Building Fort George G. Meade, MD

Pavel Likhonin
Mechanical Option

Acknowledgements:

Special Thanks To:
All the AE Faculty
&
Family and Friends

- Introduction
- •CHP Analysis
- •Electrical Analysis
- Acoustical Analysis
- •Thermal Storage Analysis
- •System Optimization Analysis
- •Conclusion
- Acknowledgements

DMA Building Fort George G. Meade, MD

Pavel Likhonin Mechanical Option

- Introduction
- CHP Analysis
- •Electrical Analysis
- Acoustical Analysis
- Thermal Storage Analysis
- System Optimization Analysis
- Conclusion
- Acknowledgements
- Questions

DMA Building

Initial Investment by CHP St

2,754,407.05

\$ 2,483,717.55

\$ 2,478,387.55

\$ 2,800,156.55

\$ 2,439,842.55

\$ 2.381.676.53

Fort George G. Meade, MD

Pavel Likhonin

Mechanical Option

stem	

			Initial Investment for T	herm	al Storage
80		Total Cost	400,000 Gallon Tank	\$	382,800
8	Wall Type	Total Cost	300 Feet of 5" pipe	\$	10,500
	Total: Additional 8" Concrete	£14,001.14	300 Feet of 2" Insulation for 5" Pipe	\$	5,874
8	otal: Additional metal stud wall with insulation	\$28,731.25	(2) 15 HP pumps	\$	10,220
8			One Less Chiller	\$	(293,062.
8	Total: Additional metal stud wall, no insulation	\$14,498.80	One Less Cooling Tower	\$	(50,472.
			Increasing size of original Chillers	\$	94,648
	Total: Additional block wall	\$28,085.95	Increasing size of original Towers	\$	13,160

400,000 Gallon Tank	\$	382,800.00			
300 Feet of 5" pipe	\$	10,500.00			
300 Feet of 2" Insulation for 5" Pipe	\$	5,874.00			
(2) 15 HP pumps	\$	10,220.00			
One Less Chiller	\$	(293,062.50)			
One Less Cooling Tower	\$	(50,472.80)			
Increasing size of original Chillers	\$	94,648.00			
Increasing size of original Towers	\$	13,160.00			
Total		172 666 70			

8:	Initial Investment for Thermal S	torag	e with CHP
8	400,000 Gallon Tank	\$	354,200.0
8	300 Feet of 5" Pipe	\$	10,500.00
%: %:	300 Feet of 2" Insulation for 5" Pipe	\$	5,874.0
8:	(2) 15 HP Pumps	\$	10,220.00
×	One Less Chiller	\$	(293,062.50
8	One Less Cooling Tower	\$	(50,472.80
8	Increasing Size of Original Chiller	\$	71,200.00
8	Increasing Size of Original Towers	\$	14,950.00
8	Total	\$	123,408.7

- Introduction
- CHP Analysis
- Electrical Analysis
- Acoustical Analysis
- Thermal Storage Analysis
- System Optimization Analysis
- •Conclusion
- Acknowledgements
- Questions

DMA Building

Pavel Likhonin

Mechanical Option

Fort George G. Meade, MD

CO2e Savings when compared to Grid									
A B				С	D	E	F		
	kWh	20,936,400.00	20,982,933.93	20,936,400.00	16,673,858.17	17,305,591.92	15,776,760.00		
IC Engine	BTU	74,893,389,355.47	71,635,736,437.02	71,476,869,600.00	70,082,301,286.29	59,081,290,819.32	53,861,858,640.00		
	CO2e (lb)	10,260,394.34	9,814,095.89	9,792,331.14	9,601,275.28	8,094,136.84	9,011,793.30		
Grid	kWh	18,602,443	18,602,443	18,602,443	18,602,443	18,602,443	18,602,443		
	CO2e (lb)	33,856,445.42	33,856,445.42	33,856,445.42	33,856,445.42	33,856,445.42	33,856,445.42		

- •Equivalent of removing 1,916 cars!
- •Spark Gap: \$18.99
- •O&M costs from EPA.gov: \$0.005/kWh
- Assumed 40% Elect. Efficiency at 75% load. From manufacturer, full load electrical efficiency is 42.6%
 System E never drops below 75% of the load, making load following very efficient
- •Thermal to Electric Ratio of 0.85 to 1.25 during the peak summer months

